LA ILAHA ILLA HU
Allah, Your Lord There Is No Deity Except Him.
Python Data Science Matplotlib Labels and Title Set A Label for the x- and y-axis
Label and titles are used to set a label for the x- and y-axis. You can use the xlabel() and ylabel() functions to set a label with Pyplot.
Example 1: Add labels to the x- and y-axis.
Code
import numpy as np
import matplotlib.pyplot as plt
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])
plt.plot(x, y)
plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")
plt.show()
the output will be
Creating a Title for the Plot:
You can use the title() function to set a title for your plot with Pyplot.
Example 2: Add a plot title and labels for the x- and y-axis.
Code
import numpy as np
import matplotlib.pyplot as plt
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([245, 255, 265, 275, 285, 295, 305, 315, 325, 335])
plt.plot(x, y)
plt.title("Sports Watch Data")
plt.xlabel("Average Pulse")
plt.ylabel("Calorie Burnage")
plt.show()
the output will be
Setting Font Properties for Title and Labels
The fontdict parameter can be used in xlabel(), ylabel(), and title() to set font properties for the title and labels.
Example 3: Set font properties for the title and labels
import numpy as np
import matplotlib.pyplot as plt
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([240, 250, 260, 270, 280, 290, 300, 310, 320, 330])
font1 = {'family':'serif','color':'blue','size':20}
font2 = {'family':'serif','color':'darkred','size':15}
plt.title("Sports Watch Data", fontdict = font1)
plt.xlabel("Average Pulse", fontdict = font2)
plt.ylabel("Calorie Burnage", fontdict = font2)
plt.plot(x, y)
plt.show()
the output will be
Positioning the Title
One can use the loc parameter in title() to position the title.
Legal values are: 'left', 'right', and 'center'. Default value is 'center'.
Example 4: Position the title to the left.
Code
import numpy as np
import matplotlib.pyplot as plt
x = np.array([80, 85, 90, 95, 100, 105, 110, 115, 120, 125])
y = np.array([245, 255, 265, 275, 285, 295, 305, 315, 325, 335])
font1 = {'family':'serif','color':'blue','size':20}
font2 = {'family':'serif','color':'darkred','size':15}
plt.title("Sports Watch Data", fontdict = font1, loc = 'left')
plt.xlabel("Average Pulse", fontdict = font2)
plt.ylabel("Calorie Burnage", fontdict = font2)
plt.plot(x, y)
plt.show()
the output will be